skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ball, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using the EXOplanet Transit Interpretation Code (EXOTIC), we reduced 52 sets of images of WASP-104 b, a Hot Jupiter-class exoplanet orbiting WASP-104, in order to obtain an updated mid-transit time (ephemeris) and orbital period for the planet. We performed this reduction on images taken with a 6-inch telescope of the Center for Astrophysics | Harvard & Smithsonian MicroObservatory. Of the reduced light curves, 13 were of sufficient accuracy to be used in updating the ephemerides for WASP-104b, meeting or exceeding the three-sigma standard for determining a significant detection. Our final mid-transit value was 2457805.170208 ± 0.000036 BJD_TBD and the final period value was 1.75540644 ± 0.00000016 days. The true significance of our results is in their derivation from image sets gathered over time by a small, ground-based telescope as part of the Exoplanet Watch citizen science initiative, and their competitive results to an ephemeris generated from data gathered by the TESS telescope. We use these results to further show how such techniques can be employed by amateur astronomers and citizen scientists to maximize the efficacy of larger telescopes by reducing the use of expensive observation time. The work done in the paper was accomplished as part of the first fully online Course-Based Undergraduate Research Experience (CURE) for astronomy majors in the only online Bachelor of Science program in Astronomical and Planetary Sciences. 
    more » « less